

 Navigation

 	
 index

 	
 next |

 	BioTK documentation

Welcome to BioTK’s documentation!

Overview

BioTK is a Python toolkit, containing a library and scripts, for various
bioinformatics tasks:

	Differential expression analysis on microarray and RNA-seq data

	Functional and downstream analysis of DE gene lists

	Ontology handling

	Text mining, ranging from shallow NLP to relation extraction

	Efficient storage and querying of sets of genomic intervals
(similar to BEDTools, GenomicRanges, etc.)

Tutorial

	Expression analysis
	Loading expression data

	Normalizing expression data

	Differential expression

	Visualization

	Enrichment analysis

	Meta-analysis

	Transcript expression meta-analysis
	Importing data

	Performing a meta-analysis

	Finding coexpressed genes

	Inferring categories for genes or samples

Development information

	General development information
	Contributors

	License

	How to contribute
	Writing code
	Naming conventions

	Documentation
	Sphinx documentation

	Docstrings

	Internal code comments

	Unit tests

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BioTK documentation

Expression analysis

BioTK aims to provide an alternative to the standard R/Bioconductor
environment to perform run-of-the-mill differential expression analyses. Thus,
BioTK has the ability to perform all the standard steps in a differential
expression analysis pipeline:

	Loading raw or preprocessed data

	Preprocessing and normalizing the data

	Finding differentially expressed probes/genes between conditions

	Analyses of DE gene lists:
- Performing enrichment analyses against ontologies
- Visualizing expression or DE results as heatmaps or networks

There are also features for downstream analyses of and methods to take large
collections of expression data, from GEO, in-house data, or a combination
thereof, and use these collections for large-scale meta-analysis.

Todo

	put a simple example of a complete-ish analysis here

	possibly explain important data structures?

Loading expression data

From Affymetrix CEL files

From GEO

From RNA-seq aligned reads

Normalizing expression data

Quantile normalization

Differential expression

Currently, the available differential expression algorithms are:

	t-test

	ANOVA

	SAM

In the future, we plan to provide either a port or a simplified Python
interface to the R package limma, which is one of the most popular tools for
finding DE genes.

T-test

ANOVA

SAM

Visualization

Heatmap

Enrichment analysis

Meta-analysis

BioTK can store large amounts of expression data from multiple experiments and
even multiple organisms and efficiently perform meta-analyses on this data.
Please see Transcript expression meta-analysis.

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BioTK documentation

Transcript expression meta-analysis

BioTK provides a way to store up to millions of expression vectors, along with
associated probe mappings and phenotype/sample data, in HDF5 format on your
hard drive for efficient querying and meta-analysis. HDF5 has many benefits,
including query efficiency and the ability to store all your expression data
in a single file that can be easily backed up or transferred to different
computers.

If you like, you can easily store and query all available GEO samples for your
model organism(s) of choice.

Importing data

Performing a meta-analysis

Finding coexpressed genes

Inferring categories for genes or samples

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BioTK documentation

General development information

Contributors

	Mikhail Dozmorov

	Cory Giles

	Stuart Glenn

License

BioTK is licensed under the GNU Affero General Public License version 3 [http://www.gnu.org/licenses/agpl-3.0.html] (or any later version thereof,
at your option).

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	BioTK documentation

How to contribute

If you’d like to contribute to BioTK (yay!), please follow the guidelines
below. In summary:

	Write the code

	Write documentation

	Write tests (that pass)

	Submit a pull request on GitHub

Although we use PEP8 for variable names and Numpy docstring format (with a few
exceptions), don’t obsess over following every detail of these format guides,
especially if you are new to them. Just do what you can, and we can fix minor
errors later.

Writing code

Naming conventions

Code mostly follows standard Python naming conventions from PEP8
(lower_case_with_underscore for variables and functions, CamelCase for classes,
private variables or methods with leading underscore, etc.).

There is one exception: modules and packages. Because of the huge
preponderance of acronyms in biomedicine, modules are CamelCase with acronyms
all uppercase if they describe a file format, external program, or well-known
algorithm. Otherwise, they are lower-case.

Examples:

	BioTK.io.BEDGraph

	BioTK.io.Aspera

	BioTK.text.parse

	BioTK.text.AhoCorasick

Documentation

If you want to contribute some code, the most important kind of documentation
to provide is docstrings. Sphinx documentation and in-code comments are nice
to have, but not crucial.

Sphinx documentation

High level information and tutorials are written in the doc/ directory in
reStructuredText format, and built into HTML and other formats using Sphinx.
These docs are automatically mirrored to http://BioTK.readthedocs.org/ .

A useful reStructuredText primer can be found at
http://docutils.sourceforge.net/docs/user/rst/quickref.html .

Docstrings

Modules, and public classes and functions inside them, need docstrings. Keep
it high level, explaining what the module/function and the parameters are
doing, not how they are doing it. Provide citations to the algorithm’s paper
if appropriate. Generally speaking, the more “public” a function/class is, the
more documentation it needs. If it should be rarely or never directly called
by a user, it may only need one line. Conversely, a large class with many
methods may need quite extensive documentation.

The docstrings are written in Numpy format, with one exception: in BioTK,
there is always a leading newline on the first line. Thus, instead of:

def add(a, b):
 """The sum of two numbers.

 (rest of docstring ...)
 """

we use:

def add(a, b):
 """
 The sum of two numbers.

 (rest of docstring ...)
 """

The numpy docstring format is described here:

	https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

And many good examples are here:

	http://sphinx-doc.org/latest/ext/example_numpy.html

Internal code comments

Functions and class methods should be short enough, and the code should be
clear enough, that code comments should mostly be unnecessary. Use good
judgment: if a particularly tricky method is being used, it may need some
explanation, but in general keep comments high level.

You can mark “wishlist” items with a TODO comment, and items that are actually
broken or need urgent attention with “FIXME” (obviously the latter should be
done sparingly).

Unit tests

They are written using the py.test framework, and are placed in the test/
directory, with a directory structure that mirrors the structure of BioTK.

If possible, avoid tests that take a long time to run or require network
access.

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	BioTK documentation

Index

 Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

 _static/comment-bright.png

search.html

 Navigation

 		
 index

 		BioTK documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/comment-close.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/file.png

_static/down-pressed.png

_static/plus.png

MDB.html

 Navigation

 		
 index

 		BioTK documentation »

 © Copyright 2014, BioTK contributors.
 Created using Sphinx 1.2.

